Simulation of surface processes
نویسندگان
چکیده
منابع مشابه
Simulation of surface processes.
Computer simulations of surface processes can reveal unexpected insight regarding atomic-scale structure and transitions. Here, the strengths and weaknesses of some commonly used approaches are reviewed as well as promising avenues for improvements. The electronic degrees of freedom are usually described by gradient-dependent functionals within Kohn-Sham density functional theory. Although this...
متن کاملSurface Roughness Control Simulation of Turning Processes
The machining quality on computerized numerically controlled (CNC) machine tools is sensitive to the machining parameters. With modern machine tools, an operator still manually adjusts controlling parameters, such as feed rate and cutting speed. The adjusted values mainly depend on operator experience and knowledge. Standard machining catalogues and commercial cutting condition prediction softw...
متن کاملSimulation of water surface profile in vertically stratified rockfill dams
Detention rockfill dams are accounted as economically efficient structures for flood control, river bed and banks protection, flow diversion, etc. As the hydraulic behavior of these structures, when are used for flood control, is affected by the depth of water in their porous media, there is interests to predict water surface profile through the body of these structures. In this research, we de...
متن کاملSimulation of nanodroplet impact on a solid surface
A novel computational fluid dynamics and molecular kinetic theory (CFD-MK) method was developed to simulate the impingement of a nanodroplet onto a solid surface. A numerical solution of the Navier–Stokes equation using a volume-of-fluid (VOF) technique was used to model nanodroplet deformation. Dynamic contact angle during droplet impact was obtained by molecular kinetic theory. This dynamic c...
متن کاملSimulation of nanodroplet impact on a solid surface
A novel computational fluid dynamics and molecular kinetic theory (CFD-MK) method was developed to simulate the impingement of a nanodroplet onto a solid surface. A numerical solution of the Navier–Stokes equation using a volume-of-fluid (VOF) technique was used to model nanodroplet deformation. Dynamic contact angle during droplet impact was obtained by molecular kinetic theory. This dynamic c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 2011
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.1006670108